THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2010D Advanced Calculus 2019-2020

Solution to Problem Set 4

- 1. Without using any software, sketch the graph of the following functions.
	- (a) $f(x, y) = x^2 + y^2$
	- (b) $f(x, y) = x^2 y^2$
	- (c) $f(x,y) = -x^2 y^2$

For each of the above function, determine whether $(0,0)$ is a maximum or minimum point.

Ans:

(a)
$$
f(x, y) = x^2 + y^2
$$

 $(0, 0)$ is a minimum point.

(b) $f(x, y) = x^2 - y^2$

 $(0, 0)$ is a saddle point.

(c)
$$
f(x,y) = -x^2 - y^2
$$

 $(0, 0)$ is a maximum point.

- 2. Let $f(x,y) = \sin(x^2 + y^2)$.
	- (a) Plot the graph of the function $f(x, y)$.
	- (b) Describe the level set $L_{-1}(f)$, $L_0(f)$ and $L_1(f)$.

Ans:

(a) $f(x, y) = \sin(x^2 + y^2)$

- (b) $L_{-1}(f) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 2k\pi + 3\pi/2, k = 0, 1, 2, \ldots\}$ $L_0(f) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = k\pi, k = 0, 1, 2, \ldots\}$ $L_1(f) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 2k\pi + \pi/2, k = 0, 1, 2, \ldots\}$
- 3. Let $f(x, y) = e^{-x^2 y^2}$.
	- (a) Plot the graph of the function $f(x, y)$.
	- (b) Describe the level set $L_c(f)$.

Ans:

(a)
$$
f(x, y) = e^{-x^2 - y^2}
$$

(b) For $0 < c \le 1$, we have $L_c(f) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = \ln(\frac{1}{c})\};$ otherwise, $L_c(f)$ is empty.

4. Let
$$
f(x, y) = \begin{cases} 1 & \text{if } |x| = |y|; \\ 0 & \text{otherwise.} \end{cases}
$$

- (a) Sketch the graph of the function $f(x, y)$.
- (b) Prove that $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

Ans:

- (a) The graph of $f(x, y)$ is almost the xy-plane, except that when (x, y) is a point lying on the two straight lines $x = y$ or $x = -y$, $f(x, y) = 1$. Therefore, you will see a cross lifting on.
- (b) Consider $\gamma_1(t) = (0, t)$ and $\gamma_2(t) = (t, t)$. Then, for $t \neq 0$, we have $\gamma_1(t) = 0$ and so $\lim_{t \to 0} f(\gamma_1(t)) = \lim_{t \to 0} 0 = 0$. On the other hand, $\lim_{t \to 0} f(\gamma_2(t)) = \lim_{t \to 0} f(t, t) = \lim_{t \to 0} 1 = 1.$ We have $\lim_{t\to 0} f(\gamma_1(t)) \neq \lim_{t\to 0} f(\gamma_2(t))$ and so $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

5. Let $f(x,y) = \frac{xy^2 - 1}{y - 1}$. Prove that $\lim_{(x,y) \to (1,1)} f(x, y)$ does not exist.

Ans:

Consider $\gamma_1(t) = (1, 1 + t)$ and $\gamma_2(t) = (1 + t, 1 + t)$. Then, we have

$$
\lim_{t \to 0} f(\gamma_1(t)) = \lim_{t \to 0} \frac{2t + t^2}{t} = 2.
$$

On the other hand,

$$
\lim_{t \to 0} f(\gamma_2(t)) = \lim_{t \to 0} \frac{3t + 3t^2 + t^3}{t} = 3.
$$

We have $\lim_{t\to 0} f(\gamma_1(t)) \neq \lim_{t\to 0} f(\gamma_2(t))$ and so $\lim_{(x,y)\to(1,1)} f(x,y)$ does not exist.

6. Determine whether each the following limit exists, if yes, find its value; if no, prove your assertion.

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^3 + x^2y + 3xy^2 + 3y^3}{x^2 + 3y^2}
$$

\n(b)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2 + \sin^2 y}{2x^2 + y^2}
$$

\n(c)
$$
\lim_{(x,y)\to(0,0)} \frac{y^3}{x^2 + y^2}
$$

Ans:

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^3 + x^2y + 3xy^2 + 3y^3}{x^2 + 3y^2} = \lim_{(x,y)\to(0,0)} \frac{(x+y)(x^2 + 3y^2)}{x^2 + 3y^2} = \lim_{(x,y)\to(0,0)} x + y = 0
$$

(b) Let $f(x, y) = \frac{x^2 + \sin^2 y}{2x^2 + 3}$ $\frac{3}{2x^2+y^2}$. Let $\gamma_1(t) = (t, 0)$ and $\gamma_2(t) = (0, t)$, for $t \in \mathbb{R}$. Then, we have $\gamma_1(0) = \gamma_2(0) = (0, 0)$.

$$
\lim_{t \to 0} (f \circ \gamma_1)(t) = \lim_{t \to 0} f(t, 0) = \lim_{t \to 0} \frac{t^2}{2t^2} = \lim_{t \to 0} \frac{1}{2} = \frac{1}{2}
$$

$$
\lim_{t \to 0} (f \circ \gamma_2)(t) = \lim_{t \to 0} f(0, t) = \lim_{t \to 0} \frac{\sin^2 t}{t^2} = \lim_{t \to 0} \left(\frac{\sin t}{t}\right)^2 = 1^2 = 1
$$

 $\lim_{t \to 0} (f \circ \gamma_1)(t) \neq \lim_{t \to 0} (f \circ \gamma_2)(t)$ and so $\lim_{(x,y) \to (0,0)}$ $x^2 + \sin^2 y$ $\frac{y}{2x^2+y^2}$ does not exist.

(c) Consider $(x, y) \in B_1^{\circ}(0, 0)$, i.e. $0 < \sqrt{x^2 + y^2} < 1$, we then have $x^2 \le x^2 + y^2 < 1$. Therefore, for all $(x, y) \in B_1^{\circ}(0, 0)$, we have

$$
\frac{y^2 < x^2 + y^2 < 1 + y^2}{y^2 + 1} < \frac{1}{x^2 + y^2} < \frac{1}{y^2}
$$

Also, we have $-|y|^3 \leq y^3 \leq |y|^3$, so

$$
-|y| = -\frac{|y|^3}{y^2} < \frac{y^3}{x^2 + y^2} < \frac{|y|^3}{y^2} = |y|
$$

Note that $\lim_{(x,y)\to(0,0)} -|y| = \lim_{(x,y)\to(0,0)} |y| = 0.$ By sandwich theorem, we have $\lim_{(x,y)\to(0,0)}$ y^3 $\frac{y}{x^2+y^2}=0.$

7. Determine whether each the following limit exists, if yes, find its value; if no, prove your assertion.

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}
$$

(b)
$$
\lim_{(x,y)\to(0,0)} \frac{\sin(x^2 + y^2)}{x^2 + y^2};
$$

(c)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^3+y^4};
$$

(d) $\lim_{x\to 0} \frac{xy^2-1}{1}$

(a)
$$
\lim_{(x,y)\to(1,1)} \overline{y-1}
$$

Ans:

(a)
$$
\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} \frac{x(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} x(\sqrt{x} + \sqrt{y}) = 0
$$

(b) Let $r = \sqrt{x^2 + y^2}$. Then,

$$
\lim_{(x,y)\to(0,0)}\frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{r\to 0}\frac{\sin(r^2)}{r^2}
$$

= 1

(c) Let $f(x, y) = \frac{x^2y}{x^2}$ $\frac{x}{x^3 + y^4}$ and let $\gamma(t) = (t, mt)$, for $t \in \mathbb{R}$. Then,

$$
\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{mt^3}{t^3 + m^4 t^4}
$$

$$
= \lim_{t \to 0} \frac{m}{1 + m^4 t}
$$

$$
= m
$$

which depends on m .

Therefore, $\lim_{(x,y)\to(0,0)}$ x^2y $\frac{x}{x^3+y^4}$ does not exist. (d) Let $f(x, y) = \frac{xy^2 - 1}{y - 1}$ and let $\gamma(t) = (1 + t, 1 + mt)$, for $t \in \mathbb{R}$. Then,

$$
\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{(1+t)(1+mt)^2 - 1}{(1+mt) - 1}
$$
\n
$$
= \lim_{t \to 0} \frac{(2m+1)t + (m^2 + 2m)t^2 + m^2t^3}{mt}
$$
\n
$$
= \lim_{t \to 0} \frac{(2m+1) + (m^2 + 2m)t + m^2t^2}{m}
$$
\n
$$
= \frac{2m+1}{m}
$$

which depends on m .

Therefore, $\lim_{(x,y)\to(1,1)}$ xy^2-1 $\frac{y}{y-1}$ does not exist.

8. Let $f(x,y) = \frac{xy^3}{x^3 + y^5}$.

- (a) i. Let $\gamma(t) = (t, mt)$, for $m \in \mathbb{R}$. Show that $\lim_{t \to 0} f(\gamma(t)) = 0$. ii. Let $\gamma(t) = (0, t)$. Show that $\lim_{t \to 0} f(\gamma(t)) = 0$.
- (b) Let $\gamma(t) = (t^3, t^2)$, for $m \in \mathbb{R}$. Show that $\lim_{t \to 0} f(\gamma(t)) = 1$. Hence, determine whether $\lim_{(x,y)\to(0,0)} f(x,y)$ exists or not.

Ans:

(a) i.
$$
\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{m^3 t^4}{t^3 + m^5 t^5} = \lim_{t \to 0} \frac{m^3 t}{1 + m^5 t^2} = 0.
$$

ii.
$$
\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{(0)(t^3)}{0^3 + t^5} = \lim_{t \to 0} 0 = 0.
$$

(b)
$$
\lim_{t \to 0} f(\gamma(t)) = \lim_{t \to 0} \frac{t^9}{t^9 + t^{10}} = \lim_{t \to 0} \frac{1}{1 + t} = 1.
$$

When (x, y) tends to $(0, 0)$ along any straight line, $f(x, y)$ tends to 0; but when (x, y) tends to $(0, 0)$ along the curve $\gamma(t) = (t^3, t^2), f(x, y)$ tends to 1.

Therefore, $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

9. (a) Prove that for all $u > 0$, we have

$$
\frac{1}{1+u^2} < \frac{\tan^{-1} u}{u} < 1.
$$

(b) Using the result in (a), evaluate $\lim_{(x,y)\to(0,0)}$ $\tan^{-1}(|x|+|y|)$ $\frac{|x| + |y|}{|x| + |y|}.$

Ans:

Note

(a) Let $f(x) = \tan^{-1} x$ and let $u > 0$.

Note that f is continuous on $[0, u]$ and differentiable on $(0, u)$.

By mean value theorem, there exists $c \in [0, u]$ such that

$$
\frac{f(u) - f(0)}{u - 0} = f'(c)
$$

$$
\frac{\tan^{-1} u}{u} = \frac{1}{1 + c^2}
$$

Since $0 < c < u$, we have $1 < 1 + c^2 < 1 + u^2$ and $\frac{1}{1 + u^2} < \frac{1}{1 + u^2}$ $\frac{1}{1+c^2}$ < 1. Therefore,

$$
\frac{1}{1+u^2} < \frac{\tan^{-1} u}{u} < 1.
$$

< 1.

(b) If $(x, y) \neq (0, 0)$, then $|x| + |y| > 0$. By putting $u = |x| + |y|$ in the inequality obtained in (a), we have

$$
\frac{1}{1 + (|x| + |y|)^2} < \frac{\tan^{-1}(|x| + |y|)}{|x| + |y|} <
$$
\nNote that

\n
$$
\lim_{(x,y)\to(0,0)} \frac{1}{1 + (|x| + |y|)^2} = \lim_{(x,y)\to(0,0)} 1 = 1.
$$
\nBy sandwich theorem, we have

\n
$$
\lim_{(x,y)\to(0,0)} \frac{\tan^{-1}(|x| + |y|)}{|x| + |y|} = 1.
$$